If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-19y+24=0
a = 2; b = -19; c = +24;
Δ = b2-4ac
Δ = -192-4·2·24
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-13}{2*2}=\frac{6}{4} =1+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+13}{2*2}=\frac{32}{4} =8 $
| 4+4n=7n+4 | | 2x+10/6=36 | | 5x2=11x | | 5u-8u-4=0 | | 4x+9x-19=76-6x | | 6p=-20 | | 2x(2x+1)=12 | | X^+5x-13=0 | | 0.12x+39.95= | | 4(2x+3)=2(3x+2)+(2x+1) | | 36n^2=25 | | x-2/12=5/9 | | Y=-1/3x+8 | | 2x+5/2=20 | | 28f+21f=42f+14f | | 2.4+10m=8.18 | | X-2+4=x | | 3x-12=2x+1 | | 0=-5x^2+26x+24 | | 2x+17=41 | | 8+6q=10+5q | | 3x+50=3x+1000 | | 14=n/21 | | 7+a=19;a=12 | | w-11=4.1 | | x-1/2=x-2/4 | | 4π=w-6π | | -9x+11=20-6× | | y+6-4.5=10 | | 11h-4h+h+2=18 | | -50=-5x+5(2x+2) | | 8.1+3.8h=7.2 |